quasijlms(2).pdf

(296 KB) Pobierz
SubmittedexclusivelytotheLondonMathematicalSociety
doi:10.1112/0000/000000
Anoteonquasi-similarityofKoopmanoperators
K.Fr¡czekandM.Lema«czyk
Abstract
AnsweringaquestionofA.Vershikweconstructtwonon-weaklyisomorphicergodicautomor-
phismsforwhichtheassociatedunitary(Koopman)representationsareMarkovquasi-similar.We
alsodiscussmetricinvariantsofMarkovquasi-similarityintheclassofergodicautomorphisms.
1. Introduction
Markovoperatorsappearintheclassicalergodictheoryinthecontextofjoinings,seethe
monograph[7].Indeed,assumethatT i isanergodicautomorphismofastandardprobability
Borelspace(X i ,B i i ),i=1,2.ConsiderajoiningofT 1 andT 2 ,i.e.aT 1 ×T 2 -invariant
probabilitymeasureon(X 1 ×X 2 ,B 1 B 2 )withthemarginalsµ 1 andµ 2 respectively.Then
theoperator :L 2 (X 1 ,B 1 1 )!L 2 (X 2 ,B 2 2 )determinedby
h f 1 ,f 2 i L 2 (X 2 ,B 2 2 ) =hf 1 1 X 2 , 1 X 1 f 2 i L 2 (X 1 ×X 2 ,B 1 B 2 ,) (1.1)
isMarkov(i.e.itisalinearcontractionwhichpreservestheconeofnon-negativefunctionsand
1 = 1 = 1 )andmoreover
U T 1 =U T 2 , (1.2)
whereU T i :L 2 (X i ,B i i )!L 2 (X i ,B i i )standsfortheassociatedunitaryoperator: U T i f=
fT i forf2L 2 (X i ,B i i ),i=1,2,whichisoftencalledaKoopmanoperator.Infact,each
Markovoperator:L 2 (X 1 ,B 1 1 )!L 2 (X 2 ,B 2 2 )satisfyingtheequivarianceproperty(1.2)
isoftheform forauniquejoiningofT 1 andT 2 (seee.g.[17],[24]).Markovoperators
correspondingtoergodicjoiningsarecalledindecomposable.
Inordertoclassifydynamicalsystemsoneusuallyconsidersthemeasure-theoreticisomor-
phism,i.e.theequivalencegivenbytheexistenceofaninvertiblemap S:(X 1 ,B 1 1 )!
(X 2 ,B 2 2 )forwhichST 1 =T 2 S.Themeasure-theoretic(metric)isomorphismimplies
spectralequivalenceoftheKoopmanoperators U T 1 andU T 2 ;indeed,U S −1 (whereU S −1 f 1 =
f 1 S −1 forf 1 2L 2 (X 1 ,B 1 1 ))providessuchanequivalence.Theconversedoesnothold,
seee.g.[1];wealsorecallthatallBernoullishiftsarespectrallyequivalentwhiletheentropy
classifythemmeasure-theoretically[19].Onemayaskwhethertherecanbesomeothernatural
classi cationofdynamicalsystemswhichliesinbetweenmetricandspectralequivalence.
Given(X,B,µ)astandardprobabilityBorelspace,following[26],eachprobabilitymeasure
on(X×X,BB)withbothmarginalsµiscalledapolymorphism.Regardingautomorphisms
of(X,B,µ)asthecorrespondinggraphmeasures,in[26],Vershikoriginatesanewtheory
thetheoryofpolymorphisms inwhichpolymorphismsareanaloguesofautomorphismsof
(X,B,µ).Since,inviewof(1.1),thereisaone-to-onecorrespondencebetweenpolymorphisms
andMarkovoperatorsofL 2 (X,B,µ),asthecorrespondingequivalence(borrowedforoperator
theory,seebelow)VershikhaschosenMarkovquasi-similarity.Inparticular,Vershikproposed
2000MathematicsSubjectClassi cation37A05,37A30,37A35.
ResearchpartiallysupportedbyPolishMNiSzWgrantNN201384834;partiallysupportedbyMarieCurie
TransferofKnowledge EUprogram projectMTKD-CT-2005-030042(TODEQ)
Page2of15 K.FR CZEKANDM.LEMA CZYK
tostudythisnewequivalencebetweenpolymorphismsandautomorphisms,andevenbetween
automorphismsthemselves.
RecallthatifA i isaboundedlinearoperatorofaHilbertspaceH i ,i=1,2,andifthereisa
boundedlinearoperatorV :H 1 !H 2 whoserangeisdenseandwhichintertwinesA 1 andA 2 ,
thisisVA 1 =A 2 V,thenA 2 issaidtobeaquasi-imageofA 1 (see[4]).Byduality,A 2 is
aquasi-imageofA 1 ifandonlyifthereexistsa1−1boundedlinearoperatorW:H 2 !H 1
intertwiningA 2 andA 1 .IfalsoA 1 isaquasi-imageofA 2 thenthetwooperatorsarecalled
quasi-similar.RecallalsothattwooperatorsA 1 andA 2 arequasi-a neifthereexistsa1−1
boundedlinearoperatorV :H 1 !H 2 withdenserangeintertwiningA 1 andA 2 .Ingeneral,
thenotionofquasi-a nityisstrongerthanquasi-similarity(seehoweverRemark2.2below).
AssumeadditionallythatA i isaMarkovoperatorofH i =L 2 (X i ,B i i ),i=1,2.IfA 2 is
aquasi-imageofA 1 andweadditionallyrequireV :L 2 (X 1 ,B 1 1 )!L 2 (X 2 ,B 2 2 )tobea
MarkovoperatorthenA 2 issaidtobeaMarkovquasi-imageofA 1 .IfadditionallyA 1 isa
Markovquasi-imageofA 2 thenthetwooperatorsarecalledMarkovquasi-similar.Operators
A 1 andA 2 areMarkovquasi-a neifthereexistsa1−1MarkovoperatorVbetweenthe
correspondingL 2 -spaceswithdenserangeintertwiningA 1 andA 2 .
NoticethateachKoopmanoperatorisalsoaMarkovoperator.Itisknown(seee.g.[15],[26])
thatifanintertwiningMarkovoperator:L 2 (X 1 ,B 1 1 )!L 2 (X 2 ,B 2 2 )isunitarythenit
hastobeoftheformU S whereSprovidesameasure-theoreticisomorphism.Ontheother
handthequasi-similarityofunitaryoperatorsimpliestheirspectralequivalence(seeSection2
below).Therefore,Markovquasi-similarityliesinbetweenthespectralandmeasure-theoretic
equivalenceofdynamicalsystems.OneofquestionsraisedbyVershikin[26]isthefollowing:
Dothereexisttwoautomorphismsthatarenotisomorphic
butareMarkovquasi-similar?
(1.3)
Inordertoanswerthisquestionnoticethatanyweaklyisomorphicautomorphisms(see[25])
T 1 andT 2 areautomaticallyMarkovquasi-similar;indeed,theweakisomorphismmeansthat
thereare 1 and 2 whicharehomomorphismsbetweenT 1 andT 2 andT 2 andT 1 respectively,
thenU 1 andU 2 yieldMarkovquasi-similarityof T 1 andT 2 .Hence,ifT 1 andT 2 areweakly
isomorphicbutnotisomorphic,weobtainthepositiveanswertothequestion(1.3).The rst
examplesofweaklyisomorphicbutnotisomorphicsystemsweregivenbyPolitin[21].For
furtherexampleswereferthereaderto[12],[13],[23],includingthecaseofK-automorphisms
[8].ItfollowsthatthenotionofMarkovquasi-similarityhastobeconsideredasaninteresting
re nementofthenotionofweakisomorphism,andinVershik’squestion(1.3)wehaveto
replace notisomorphic by notweaklyisomorphic .
Themainaimofthisnoteistoanswerpositivelythismodi edquestion(1.3)(see
Proposition4.4below).Wewouldliketoemphasizethatdespiteaspectral avorofthe
de nition,Markovquasi-similarityisfarfrombeingthesameasspectralequivalence.For
example,partlyansweringVershik’squestionraisedataseminaratPennStateUniversityin
2004whetherentropyisaninvariantofMarkovquasi-similarity,weshowthatzeroentropyas
wellasK-propertyareinvariantsofMarkovquasi-similarityofautomorphisms,whiletheyare
notinvariantsofspectralequivalenceofthecorrespondingunitaryoperators.Thesefactsand
relatedproblemswillbediscussedinSections5-7.
2.Quasi-similarityofunitaryoperatorsimpliestheirunitaryequivalence
AssumethatUisaunitaryoperatorofaseparableHilbertspaceH.Givenx2HbyZ(x)we
denotethecyclicspacegeneratedbyx,i.e.Z(x)=span{U n x: n2Z}.Wewilluseasimilar
notationZ(y 1 ,...,y k )forthesmallestclosedU-invariantsubspacecontainingy i ,i=1,...,k.
DenotebyTthe(additive)circle.ThentheFouriertransformofthe(positive)measure x
ANOTEONQUASI-SIMILARITYOFKOOPMANOPERATORS Page3of15
calledthespectralmeasureofx isgivenby
b x (n):= Z
e 2int d x (t)=hU n x,xiforeachn2Z.
T
Similarlythesequence(hU n x,yi) n2 Z istheFouriertransformofthe(complex)spectralmeasure
x,y ofxandy.Givenaspectralmeasurewedenote
H ={x2H: x }.
ThenH isaclosedU-invariantsubspacecalledaspectralsubspaceofH.
ItfollowsfromSpectralTheoremforunitaryoperators(seee.g.[11]or[20])thatthereisa
decomposition
H=H 1 H 2 ...
(2.1)
intospectralsubspacessuchthatforeachi1
n M
Z(x (i)
H i =
k ),
k=1
where i x (i)
1
x (i)
2
...(n i canbein nity),and i ? j fori 6=j.Theclass U ofall
nitemeasuresequivalenttothesum P i1 i isthencalledthemaximalspectraltypeofU.
Anotherimportantinvariantof U isthespectralmultiplicityfunctionM U :T!{1,2,...}[
{1}(see[11],[20])whichisde ned-a.e.,whereisanymeasurebelongingtothemaximal
spectraltypeofU.Notethatdecomposition(2.1)isfarfrombeinguniquebutif
n 0 M
1 M
Z(y (i)
H=
H 0 i , H 0 i =
k )
i=1
k=1
isanotherdecomposition(2.1)inwhich i 0 i ,i1,thenn i =n 0 i fori1.Recallthatthe
essentialsupremumm U ofM U (calledthemaximalspectralmultiplicityofU)isequalto
inf{m1:Z(y 1 ,...,y m )=H forsomey 1 ,...,y m 2H}; (2.2)
ifthereisno good m,themm U =1.
AssumethatU i isaunitaryoperatorofaseparableHilbertspaceH i ,i=1,2.LetV :H 1 !
H 2 beaboundedlinearoperatorwhichintertwinesU 1 andU 2 .Thenforeachn2Zandx 1 2H 1
hU n 2 V x 1 ,V x 1 i=hU n 1 x 1 ,V V x 1 i,
sobyelementarypropertiesofspectralmeasures
Vx 1 = x 1 ,V Vx 1 x 1 .
(2.3)
AssumingadditionallythatIm(V)isdense,animmediateconsequenceof(2.3)isthatthe
maximalspectraltypeofaquasi-imageof U 1 isabsolutelycontinuouswithrespectto U 1 .It
isalsoclearthatgiveny (1) 1 ,...,y (1)
m 2H 1 wehave
V(Z(y (1) 1 ,...,y (1)
m ))=Z(V y (1) 1 ,...,V y (1)
m ).
Thisinturnimpliesthatthemaximalspectralmultiplicityofaquasi-imageof U 1 isatmost
m U 1 .
Proposition2.1. IfU 1 andU 2 arequasi-similarthentheyarespectrallyequivalent.
Proof.AssumethatV :H 1 !H 2 andW:H 2 !H 1 intertwineU 1 andU 2 andhavedense
ranges.Inviewof(2.3)bothoperators U 1 andU 2 havethesamemaximalspectraltypes.
Page4of15 K.FR CZEKANDM.LEMA CZYK
Consideradecomposition(2.1)forU 1 :H 1 = L i1 H (1 i andletF i :=V(H (1)
i
)fori1.The
subspacesF i areobviouslyU 2 -invariantandlet (2 i (n (2 i )denotethemaximalspectraltype
(themaximalspectralmultiplicity)of U 2 onF i .Itfollowsfrom(2.3)that (2)
i (1 i for
i1and (2 i , (2 j aremutuallysingular(inparticular, F i ?F j )wheneveri 6=j.Moreover,
n (2)
i n (1 i ,i1.SinceVhasdenserange,H 2 = L i1 F i .Itfollowsthat(uptoequivalence
ofmeasures) P i1 (i) 2 isthemaximalspectraltypeofU 2 henceitisequivalentto P i1 (1)
i
andtherefore (1)
i (2 i fori1.Th esame reasoningappliedtothedecomposition H 2 =
L i1 F i andWshowsthatH 1 = L i1 W(F i )andthemaximalspectralty peofU 1 onW(F i )
isabsolutelycontinuouswithrespectto (2)
i (1 i ,i1.ItfollowsthatW(F i )=H (1) i for
alli1.Inparticular,wehaveprovedthatn (2)
i =n (1 i butweneedtoshowthatonF i the
multiplicityisuniform.Supposethisisnotthecase,i.e.thatforsomemeasure (2 i we
have
F i =Z(z 1 )...Z(z r )F 0 i ,
whereforj=1,...r, z j =,1r < n (2) i andthemaximalspectraltypeof U 2 onF 0 i is
orthogonalto.Wehave
=W(F i )=G i W(F 0 i ),
H (1)
i
where G i =W(Z(z 1 )...Z(z r ))andthemaximalspectraltypesonG i ,say(),and
W(F 0 i )aremutuallysingular.Itfollowsthatthemultiplicityof isatmostr,whichisa
contradictionsinceallmeasuresabsolutelycontinuouswithrespectto (1 i havemultiplicit y
n (1 i .
Remark2.2.Literallyspeaking,thenotionofquasi-similarityisweakerthanthenotion
ofquasi-a nity.Proposition3.4in[4]tellsusthatquasi-a neunitaryoperatorsareunitarily
equivalent.HenceProposition2.1showsinfactthatforunitaryoperatorsquasi-similarityand
quasi-a nityareequivalentnotions.
Itisnotclear(seeSection7)whetherthenotionsofMarkovquasi-similarityandMarkov
quasi-a nityofKoopmanoperatorscoincide.
3.Aconvolutionoperatorinl 2 (Z)
Inthissectionweproduceasequenceinl 2 (Z)whichwillbeusedtoconstructaMarkov
quasi-a nitybetweentwonon-weaklyisomorphicautomorphismsinSection4.
Denotebyl 0 (Z)thesubspaceofl 2 (Z)ofcomplexsequences¯x=(x n ) n2 Z suchthat{n2Z:
x n 6=0}is nite.
Proposition3.1.Thereexistsanonnegativesequence¯a=(a n ) n2 Z 2l 2 (Z)suchthat
P n2 Z a n =1and
forevery¯x=(x n ) n2 Z 2l 2 (Z)if¯a¯x2l 0 (Z)then¯x= ¯ 0. (3.1)
Eachelementy2l 2 (Z)isanL 2 -functiononZanditsFouriertransformisafunctionh2
L 2 (T)forwhichh(n)=y n foralln2Z.Moreover,theconvolutionofl 2 -sequencescorresponds
tothepointwisemultiplicationofL 2 -functionsonthecircle.Itfollowsthatinorderto ndthe
requiredsequence¯a,itsu cesto ndafunctionf2L 2 (T)suchthat
a n = ˆ f(n)0, P n2 Z a n =1;
1244564960.009.png 1244564960.010.png 1244564960.011.png 1244564960.012.png 1244564960.001.png 1244564960.002.png
 
ANOTEONQUASI-SIMILARITYOFKOOPMANOPERATORS Page5of15
foreveryg2L 2 (T),iff·g=0theng=0;
foreverynon-zerotrigonometricpolynomial P,ifP=f·gtheng /2L 2 (T).
Thisisdonebelow.
Lemma3.2. Iff:[0,1]!R + isaconvexC 2 -functionsuchthatf(1−x)=f(x)forall
x2[0,1]then ˆ f(n)0foralln2Z.
Proof.Byassumption, f 00 (x)0forall x2[0,1].Usingintegrationbypartstwice,for
n 6=0weobtain
ˆ f(n)= Z 1
0
f(x)e −2inx dx= Z 1
0
Z 1
f(x)cos(2nx)dx= 1
2n
f(x)dsin(2nx)
0
Z 1
4 2 n 2 Z 1
0
=− 1
2n
f 0 (x)sin(2nx)dx= 1
f 0 (x)dcos(2nx)
0
f 0 (1)−f 0 (0)− Z 1
0
= 1
4 2 n 2
f 00 (x)cos(2nx)dx
f 0 (1)−f 0 (0)− Z 1
0
1
4 2 n 2
|f 00 (x)cos(2nx)|dx
f 0 (1)−f 0 (0)− Z 1
0
1
4 2 n 2
f 00 (x)dx
=0.
ProofofProposition3.1.Letusconsiderf:[0,1]!Rde nedby
e 1
|x−1/2| +2 if x 6=1/2
0 if x=1/2.
Sincef 00 (x)0forx2[0,1],byLemma3.2, a n = ˆ f(n)0.Asf:T!Risacontinuous
functionofboundedvariation,
f(x)=
1=f(0)= X
n2 Z
a n .
Sincef(x)6=0forx 6=1/2,iff·g=0forsomeg2L 2 (T)theng=0.
Suppose,contrarytoourclaim,thatthereexist g2L 2 (T)andanon-zerotrigonometric
polynomialPsuchthatf·g=P.Recallthatforeverym0wehave R 1
0 e 1/x x m dx=+1,
hence R 1
0 (e 1/x x m ) 2 dx=+1.SincePisanon-zeroanalyticfunction,thereexistsm0such
thatP (m) (1/2)6=0andP (k) (1/2)=0for0k < m.ByTaylor’sformula,thereexistC >0
and0< <1/2suchthat|P(x+1/2)|C|x| m forx2[−,].Itfollowsthat
Z
|g(x)| 2 dx Z 1/2+
1/2
|P(x)| 2 /f(x) 2 dx= Z
0
|P(x+1/2)| 2 /f(x+1/2) 2 dx
T
Z
0
(Cx m e 1/x ) 2 dx=+1,
andhenceg /2L 2 (T)whichcompletestheproof.
4.Twonon-weaklyisomorphicautomorphismswhichareMarkovquasi-similar
LetTbeanergodicautomorphismof(X,B,µ).AssumethatGisacompactmetricAbelian
groupwithHaarmeasure G .Ameasurablefunction':X!Giscalledacocycle.Usingthe
1244564960.003.png 1244564960.004.png 1244564960.005.png 1244564960.006.png 1244564960.007.png 1244564960.008.png
 
Zgłoś jeśli naruszono regulamin