quasijlms(2).pdf
(
296 KB
)
Pobierz
SubmittedexclusivelytotheLondonMathematicalSociety
doi:10.1112/0000/000000
Anoteonquasi-similarityofKoopmanoperators
K.Fr¡czekandM.Lema«czyk
Abstract
AnsweringaquestionofA.Vershikweconstructtwonon-weaklyisomorphicergodicautomor-
phismsforwhichtheassociatedunitary(Koopman)representationsareMarkovquasi-similar.We
alsodiscussmetricinvariantsofMarkovquasi-similarityintheclassofergodicautomorphisms.
1. Introduction
Markovoperatorsappearintheclassicalergodictheoryinthecontextofjoinings,seethe
monograph[7].Indeed,assumethatT
i
isanergodicautomorphismofastandardprobability
Borelspace(X
i
,B
i
,µ
i
),i=1,2.ConsiderajoiningofT
1
andT
2
,i.e.aT
1
×T
2
-invariant
probabilitymeasureon(X
1
×X
2
,B
1
B
2
)withthemarginalsµ
1
andµ
2
respectively.Then
theoperator
:L
2
(X
1
,B
1
,µ
1
)!L
2
(X
2
,B
2
,µ
2
)determinedby
h
f
1
,f
2
i
L
2
(X
2
,B
2
,µ
2
)
=hf
1
1
X
2
,
1
X
1
f
2
i
L
2
(X
1
×X
2
,B
1
B
2
,)
(1.1)
isMarkov(i.e.itisalinearcontractionwhichpreservestheconeofnon-negativefunctionsand
1
=
1
=
1
)andmoreover
U
T
1
=U
T
2
, (1.2)
whereU
T
i
:L
2
(X
i
,B
i
,µ
i
)!L
2
(X
i
,B
i
,µ
i
)standsfortheassociatedunitaryoperator: U
T
i
f=
fT
i
forf2L
2
(X
i
,B
i
,µ
i
),i=1,2,whichisoftencalledaKoopmanoperator.Infact,each
Markovoperator:L
2
(X
1
,B
1
,µ
1
)!L
2
(X
2
,B
2
,µ
2
)satisfyingtheequivarianceproperty(1.2)
isoftheform
forauniquejoiningofT
1
andT
2
(seee.g.[17],[24]).Markovoperators
correspondingtoergodicjoiningsarecalledindecomposable.
Inordertoclassifydynamicalsystemsoneusuallyconsidersthemeasure-theoreticisomor-
phism,i.e.theequivalencegivenbytheexistenceofaninvertiblemap S:(X
1
,B
1
,µ
1
)!
(X
2
,B
2
,µ
2
)forwhichST
1
=T
2
S.Themeasure-theoretic(metric)isomorphismimplies
spectralequivalenceoftheKoopmanoperators U
T
1
andU
T
2
;indeed,U
S
−1
(whereU
S
−1
f
1
=
f
1
S
−1
forf
1
2L
2
(X
1
,B
1
,µ
1
))providessuchanequivalence.Theconversedoesnothold,
seee.g.[1];wealsorecallthatallBernoullishiftsarespectrallyequivalentwhiletheentropy
classifythemmeasure-theoretically[19].Onemayaskwhethertherecanbesomeothernatural
classi
cationofdynamicalsystemswhichliesinbetweenmetricandspectralequivalence.
Given(X,B,µ)astandardprobabilityBorelspace,following[26],eachprobabilitymeasure
on(X×X,BB)withbothmarginalsµiscalledapolymorphism.Regardingautomorphisms
of(X,B,µ)asthecorrespondinggraphmeasures,in[26],Vershikoriginatesanewtheory
thetheoryofpolymorphisms
inwhichpolymorphismsareanaloguesofautomorphismsof
(X,B,µ).Since,inviewof(1.1),thereisaone-to-onecorrespondencebetweenpolymorphisms
andMarkovoperatorsofL
2
(X,B,µ),asthecorrespondingequivalence(borrowedforoperator
theory,seebelow)VershikhaschosenMarkovquasi-similarity.Inparticular,Vershikproposed
2000MathematicsSubjectClassi
cation37A05,37A30,37A35.
ResearchpartiallysupportedbyPolishMNiSzWgrantNN201384834;partiallysupportedbyMarieCurie
TransferofKnowledge
EUprogram
projectMTKD-CT-2005-030042(TODEQ)
Page2of15
K.FR
�
CZEKANDM.LEMA
‹
CZYK
tostudythisnewequivalencebetweenpolymorphismsandautomorphisms,andevenbetween
automorphismsthemselves.
RecallthatifA
i
isaboundedlinearoperatorofaHilbertspaceH
i
,i=1,2,andifthereisa
boundedlinearoperatorV :H
1
!H
2
whoserangeisdenseandwhichintertwinesA
1
andA
2
,
thisisVA
1
=A
2
V,thenA
2
issaidtobeaquasi-imageofA
1
(see[4]).Byduality,A
2
is
aquasi-imageofA
1
ifandonlyifthereexistsa1−1boundedlinearoperatorW:H
2
!H
1
intertwiningA
2
andA
1
.IfalsoA
1
isaquasi-imageofA
2
thenthetwooperatorsarecalled
quasi-similar.RecallalsothattwooperatorsA
1
andA
2
arequasi-a
neifthereexistsa1−1
boundedlinearoperatorV :H
1
!H
2
withdenserangeintertwiningA
1
andA
2
.Ingeneral,
thenotionofquasi-a
nityisstrongerthanquasi-similarity(seehoweverRemark2.2below).
AssumeadditionallythatA
i
isaMarkovoperatorofH
i
=L
2
(X
i
,B
i
,µ
i
),i=1,2.IfA
2
is
aquasi-imageofA
1
andweadditionallyrequireV :L
2
(X
1
,B
1
,µ
1
)!L
2
(X
2
,B
2
,µ
2
)tobea
MarkovoperatorthenA
2
issaidtobeaMarkovquasi-imageofA
1
.IfadditionallyA
1
isa
Markovquasi-imageofA
2
thenthetwooperatorsarecalledMarkovquasi-similar.Operators
A
1
andA
2
areMarkovquasi-a
neifthereexistsa1−1MarkovoperatorVbetweenthe
correspondingL
2
-spaceswithdenserangeintertwiningA
1
andA
2
.
NoticethateachKoopmanoperatorisalsoaMarkovoperator.Itisknown(seee.g.[15],[26])
thatifanintertwiningMarkovoperator:L
2
(X
1
,B
1
,µ
1
)!L
2
(X
2
,B
2
,µ
2
)isunitarythenit
hastobeoftheformU
S
whereSprovidesameasure-theoreticisomorphism.Ontheother
handthequasi-similarityofunitaryoperatorsimpliestheirspectralequivalence(seeSection2
below).Therefore,Markovquasi-similarityliesinbetweenthespectralandmeasure-theoretic
equivalenceofdynamicalsystems.OneofquestionsraisedbyVershikin[26]isthefollowing:
Dothereexisttwoautomorphismsthatarenotisomorphic
butareMarkovquasi-similar?
(1.3)
Inordertoanswerthisquestionnoticethatanyweaklyisomorphicautomorphisms(see[25])
T
1
andT
2
areautomaticallyMarkovquasi-similar;indeed,theweakisomorphismmeansthat
thereare
1
and
2
whicharehomomorphismsbetweenT
1
andT
2
andT
2
andT
1
respectively,
thenU
1
andU
2
yieldMarkovquasi-similarityof T
1
andT
2
.Hence,ifT
1
andT
2
areweakly
isomorphicbutnotisomorphic,weobtainthepositiveanswertothequestion(1.3).The
rst
examplesofweaklyisomorphicbutnotisomorphicsystemsweregivenbyPolitin[21].For
furtherexampleswereferthereaderto[12],[13],[23],includingthecaseofK-automorphisms
[8].ItfollowsthatthenotionofMarkovquasi-similarityhastobeconsideredasaninteresting
re
nementofthenotionofweakisomorphism,andinVershik’squestion(1.3)wehaveto
replace
notisomorphic
by
notweaklyisomorphic
.
Themainaimofthisnoteistoanswerpositivelythismodi
edquestion(1.3)(see
Proposition4.4below).Wewouldliketoemphasizethatdespiteaspectral
avorofthe
de
nition,Markovquasi-similarityisfarfrombeingthesameasspectralequivalence.For
example,partlyansweringVershik’squestionraisedataseminaratPennStateUniversityin
2004whetherentropyisaninvariantofMarkovquasi-similarity,weshowthatzeroentropyas
wellasK-propertyareinvariantsofMarkovquasi-similarityofautomorphisms,whiletheyare
notinvariantsofspectralequivalenceofthecorrespondingunitaryoperators.Thesefactsand
relatedproblemswillbediscussedinSections5-7.
2.Quasi-similarityofunitaryoperatorsimpliestheirunitaryequivalence
AssumethatUisaunitaryoperatorofaseparableHilbertspaceH.Givenx2HbyZ(x)we
denotethecyclicspacegeneratedbyx,i.e.Z(x)=span{U
n
x: n2Z}.Wewilluseasimilar
notationZ(y
1
,...,y
k
)forthesmallestclosedU-invariantsubspacecontainingy
i
,i=1,...,k.
DenotebyTthe(additive)circle.ThentheFouriertransformofthe(positive)measure
x
ANOTEONQUASI-SIMILARITYOFKOOPMANOPERATORS
Page3of15
calledthespectralmeasureofx
isgivenby
b
x
(n):=
Z
e
2int
d
x
(t)=hU
n
x,xiforeachn2Z.
T
Similarlythesequence(hU
n
x,yi)
n2
Z
istheFouriertransformofthe(complex)spectralmeasure
x,y
ofxandy.Givenaspectralmeasurewedenote
H
={x2H:
x
}.
ThenH
isaclosedU-invariantsubspacecalledaspectralsubspaceofH.
ItfollowsfromSpectralTheoremforunitaryoperators(seee.g.[11]or[20])thatthereisa
decomposition
H=H
1
H
2
...
(2.1)
intospectralsubspacessuchthatforeachi1
n
M
Z(x
(i)
H
i
=
k
),
k=1
where
i
x
(i)
1
x
(i)
2
...(n
i
canbein
nity),and
i
?
j
fori 6=j.Theclass
U
ofall
nitemeasuresequivalenttothesum
P
i1
i
isthencalledthemaximalspectraltypeofU.
Anotherimportantinvariantof U isthespectralmultiplicityfunctionM
U
:T!{1,2,...}[
{1}(see[11],[20])whichisde
ned-a.e.,whereisanymeasurebelongingtothemaximal
spectraltypeofU.Notethatdecomposition(2.1)isfarfrombeinguniquebutif
n
0
M
1
M
Z(y
(i)
H=
H
0
i
, H
0
i
=
k
)
i=1
k=1
isanotherdecomposition(2.1)inwhich
i
0
i
,i1,thenn
i
=n
0
i
fori1.Recallthatthe
essentialsupremumm
U
ofM
U
(calledthemaximalspectralmultiplicityofU)isequalto
inf{m1:Z(y
1
,...,y
m
)=H forsomey
1
,...,y
m
2H}; (2.2)
ifthereisno
good
m,themm
U
=1.
AssumethatU
i
isaunitaryoperatorofaseparableHilbertspaceH
i
,i=1,2.LetV :H
1
!
H
2
beaboundedlinearoperatorwhichintertwinesU
1
andU
2
.Thenforeachn2Zandx
1
2H
1
hU
n
2
V x
1
,V x
1
i=hU
n
1
x
1
,V
V x
1
i,
sobyelementarypropertiesofspectralmeasures
Vx
1
=
x
1
,V
Vx
1
x
1
.
(2.3)
AssumingadditionallythatIm(V)isdense,animmediateconsequenceof(2.3)isthatthe
maximalspectraltypeofaquasi-imageof U
1
isabsolutelycontinuouswithrespectto
U
1
.It
isalsoclearthatgiveny
(1)
1
,...,y
(1)
m
2H
1
wehave
V(Z(y
(1)
1
,...,y
(1)
m
))=Z(V y
(1)
1
,...,V y
(1)
m
).
Thisinturnimpliesthatthemaximalspectralmultiplicityofaquasi-imageof U
1
isatmost
m
U
1
.
Proposition2.1. IfU
1
andU
2
arequasi-similarthentheyarespectrallyequivalent.
Proof.AssumethatV :H
1
!H
2
andW:H
2
!H
1
intertwineU
1
andU
2
andhavedense
ranges.Inviewof(2.3)bothoperators U
1
andU
2
havethesamemaximalspectraltypes.
Page4of15
K.FR
�
CZEKANDM.LEMA
‹
CZYK
Consideradecomposition(2.1)forU
1
:H
1
=
L
i1
H
(1
i
andletF
i
:=V(H
(1)
i
)fori1.The
subspacesF
i
areobviouslyU
2
-invariantandlet
(2
i
(n
(2
i
)denotethemaximalspectraltype
(themaximalspectralmultiplicity)of U
2
onF
i
.Itfollowsfrom(2.3)that
(2)
i
(1
i
for
i1and
(2
i
,
(2
j
aremutuallysingular(inparticular, F
i
?F
j
)wheneveri 6=j.Moreover,
n
(2)
i
n
(1
i
,i1.SinceVhasdenserange,H
2
=
L
i1
F
i
.Itfollowsthat(uptoequivalence
ofmeasures)
P
i1
(i)
2
isthemaximalspectraltypeofU
2
henceitisequivalentto
P
i1
(1)
i
andtherefore
(1)
i
(2
i
fori1.Th
esame
reasoningappliedtothedecomposition
H
2
=
L
i1
F
i
andWshowsthatH
1
=
L
i1
W(F
i
)andthemaximalspectralty
peofU
1
onW(F
i
)
isabsolutelycontinuouswithrespectto
(2)
i
(1
i
,i1.ItfollowsthatW(F
i
)=H
(1)
i
for
alli1.Inparticular,wehaveprovedthatn
(2)
i
=n
(1
i
butweneedtoshowthatonF
i
the
multiplicityisuniform.Supposethisisnotthecase,i.e.thatforsomemeasure
(2
i
we
have
F
i
=Z(z
1
)...Z(z
r
)F
0
i
,
whereforj=1,...r,
z
j
=,1r < n
(2)
i
andthemaximalspectraltypeof U
2
onF
0
i
is
orthogonalto.Wehave
=W(F
i
)=G
i
W(F
0
i
),
H
(1)
i
where
G
i
=W(Z(z
1
)...Z(z
r
))andthemaximalspectraltypesonG
i
,say(),and
W(F
0
i
)aremutuallysingular.Itfollowsthatthemultiplicityof isatmostr,whichisa
contradictionsinceallmeasuresabsolutelycontinuouswithrespectto
(1
i
havemultiplicit
y
n
(1
i
.
Remark2.2.Literallyspeaking,thenotionofquasi-similarityisweakerthanthenotion
ofquasi-a
nity.Proposition3.4in[4]tellsusthatquasi-a
neunitaryoperatorsareunitarily
equivalent.HenceProposition2.1showsinfactthatforunitaryoperatorsquasi-similarityand
quasi-a
nityareequivalentnotions.
Itisnotclear(seeSection7)whetherthenotionsofMarkovquasi-similarityandMarkov
quasi-a
nityofKoopmanoperatorscoincide.
3.Aconvolutionoperatorinl
2
(Z)
Inthissectionweproduceasequenceinl
2
(Z)whichwillbeusedtoconstructaMarkov
quasi-a
nitybetweentwonon-weaklyisomorphicautomorphismsinSection4.
Denotebyl
0
(Z)thesubspaceofl
2
(Z)ofcomplexsequences¯x=(x
n
)
n2
Z
suchthat{n2Z:
x
n
6=0}is
nite.
Proposition3.1.Thereexistsanonnegativesequence¯a=(a
n
)
n2
Z
2l
2
(Z)suchthat
P
n2
Z
a
n
=1and
forevery¯x=(x
n
)
n2
Z
2l
2
(Z)if¯a¯x2l
0
(Z)then¯x=
¯
0. (3.1)
Eachelementy2l
2
(Z)isanL
2
-functiononZanditsFouriertransformisafunctionh2
L
2
(T)forwhichh(n)=y
n
foralln2Z.Moreover,theconvolutionofl
2
-sequencescorresponds
tothepointwisemultiplicationofL
2
-functionsonthecircle.Itfollowsthatinorderto
ndthe
requiredsequence¯a,itsu
cesto
ndafunctionf2L
2
(T)suchthat
a
n
=
ˆ
f(n)0,
P
n2
Z
a
n
=1;
ANOTEONQUASI-SIMILARITYOFKOOPMANOPERATORS
Page5of15
foreveryg2L
2
(T),iff·g=0theng=0;
foreverynon-zerotrigonometricpolynomial P,ifP=f·gtheng /2L
2
(T).
Thisisdonebelow.
Lemma3.2. Iff:[0,1]!R
+
isaconvexC
2
-functionsuchthatf(1−x)=f(x)forall
x2[0,1]then
ˆ
f(n)0foralln2Z.
Proof.Byassumption, f
00
(x)0forall x2[0,1].Usingintegrationbypartstwice,for
n 6=0weobtain
ˆ
f(n)=
Z
1
0
f(x)e
−2inx
dx=
Z
1
0
Z
1
f(x)cos(2nx)dx=
1
2n
f(x)dsin(2nx)
0
Z
1
4
2
n
2
Z
1
0
=−
1
2n
f
0
(x)sin(2nx)dx=
1
f
0
(x)dcos(2nx)
0
f
0
(1)−f
0
(0)−
Z
1
0
=
1
4
2
n
2
f
00
(x)cos(2nx)dx
f
0
(1)−f
0
(0)−
Z
1
0
1
4
2
n
2
|f
00
(x)cos(2nx)|dx
f
0
(1)−f
0
(0)−
Z
1
0
1
4
2
n
2
f
00
(x)dx
=0.
ProofofProposition3.1.Letusconsiderf:[0,1]!Rde
nedby
e
−
1
|x−1/2|
+2
if x 6=1/2
0 if x=1/2.
Sincef
00
(x)0forx2[0,1],byLemma3.2, a
n
=
ˆ
f(n)0.Asf:T!Risacontinuous
functionofboundedvariation,
f(x)=
1=f(0)=
X
n2
Z
a
n
.
Sincef(x)6=0forx 6=1/2,iff·g=0forsomeg2L
2
(T)theng=0.
Suppose,contrarytoourclaim,thatthereexist g2L
2
(T)andanon-zerotrigonometric
polynomialPsuchthatf·g=P.Recallthatforeverym0wehave
R
1
0
e
1/x
x
m
dx=+1,
hence
R
1
0
(e
1/x
x
m
)
2
dx=+1.SincePisanon-zeroanalyticfunction,thereexistsm0such
thatP
(m)
(1/2)6=0andP
(k)
(1/2)=0for0k < m.ByTaylor’sformula,thereexistC >0
and0< <1/2suchthat|P(x+1/2)|C|x|
m
forx2[−,].Itfollowsthat
Z
|g(x)|
2
dx
Z
1/2+
1/2
|P(x)|
2
/f(x)
2
dx=
Z
0
|P(x+1/2)|
2
/f(x+1/2)
2
dx
T
Z
0
(Cx
m
e
1/x
)
2
dx=+1,
andhenceg /2L
2
(T)whichcompletestheproof.
4.Twonon-weaklyisomorphicautomorphismswhichareMarkovquasi-similar
LetTbeanergodicautomorphismof(X,B,µ).AssumethatGisacompactmetricAbelian
groupwithHaarmeasure
G
.Ameasurablefunction':X!Giscalledacocycle.Usingthe
Plik z chomika:
xyzgeo
Inne pliki z tego folderu:
cetds2000(2).pdf
(48943 KB)
spectralENCYCLOPEDIA(2).pdf
(457 KB)
times23(2).pdf
(3022 KB)
AFskrypt(3).pdf
(756 KB)
Teoria_spektralna_dla_ergodykow(3).pdf
(753 KB)
Inne foldery tego chomika:
06-DLOGLI0 Podstawy logiki i teorii mnogości (geminus)
httpalgebra.rezolwenta.eu.orgMaterialy
httpmath.uni.lodz.pl~kowalcr
httpwww.fuw.edu.pl~pmajlect.php
httpwww.math.uni.wroc.pl~newelskidydaktykalogikaBlogikaB.html
Zgłoś jeśli
naruszono regulamin