$Id: path-spec.txt 17215 2008-11-08 06:32:46Z arma $ Tor Path Specification Roger Dingledine Nick Mathewson Note: This is an attempt to specify Tor as currently implemented. Future versions of Tor will implement improved algorithms. This document tries to cover how Tor chooses to build circuits and assign streams to circuits. Other implementations MAY take other approaches, but implementors should be aware of the anonymity and load-balancing implications of their choices. THIS SPEC ISN'T DONE YET. 1. General operation Tor begins building circuits as soon as it has enough directory information to do so (see section 5 of dir-spec.txt). Some circuits are built preemptively because we expect to need them later (for user traffic), and some are built because of immediate need (for user traffic that no current circuit can handle, for testing the network or our reachability, and so on). When a client application creates a new stream (by opening a SOCKS connection or launching a resolve request), we attach it to an appropriate open circuit if one exists, or wait if an appropriate circuit is in-progress. We launch a new circuit only if no current circuit can handle the request. We rotate circuits over time to avoid some profiling attacks. To build a circuit, we choose all the nodes we want to use, and then construct the circuit. Sometimes, when we want a circuit that ends at a given hop, and we have an appropriate unused circuit, we "cannibalize" the existing circuit and extend it to the new terminus. These processes are described in more detail below. This document describes Tor's automatic path selection logic only; path selection can be overridden by a controller (with the EXTENDCIRCUIT and ATTACHSTREAM commands). Paths constructed through these means may violate some constraints given below. 1.1. Terminology A "path" is an ordered sequence of nodes, not yet built as a circuit. A "clean" circuit is one that has not yet been used for any traffic. A "fast" or "stable" or "valid" node is one that has the 'Fast' or 'Stable' or 'Valid' flag set respectively, based on our current directory information. A "fast" or "stable" circuit is one consisting only of "fast" or "stable" nodes. In an "exit" circuit, the final node is chosen based on waiting stream requests if any, and in any case it avoids nodes with exit policy of "reject *:*". An "internal" circuit, on the other hand, is one where the final node is chosen just like a middle node (ignoring its exit policy). A "request" is a client-side stream or DNS resolve that needs to be served by a circuit. A "pending" circuit is one that we have started to build, but which has not yet completed. A circuit or path "supports" a request if it is okay to use the circuit/path to fulfill the request, according to the rules given below. A circuit or path "might support" a request if some aspect of the request is unknown (usually its target IP), but we believe the path probably supports the request according to the rules given below. 2. Building circuits 2.1. When we build 2.1.1. Clients build circuits preemptively When running as a client, Tor tries to maintain at least a certain number of clean circuits, so that new streams can be handled quickly. To increase the likelihood of success, Tor tries to predict what circuits will be useful by choosing from among nodes that support the ports we have used in the recent past (by default one hour). Specifically, on startup Tor tries to maintain one clean fast exit circuit that allows connections to port 80, and at least two fast clean stable internal circuits in case we get a resolve request or hidden service request (at least three if we _run_ a hidden service). After that, Tor will adapt the circuits that it preemptively builds based on the requests it sees from the user: it tries to have two fast clean exit circuits available for every port seen within the past hour (each circuit can be adequate for many predicted ports -- it doesn't need two separate circuits for each port), and it tries to have the above internal circuits available if we've seen resolves or hidden service activity within the past hour. If there are 12 or more clean circuits open, it doesn't open more even if it has more predictions. Only stable circuits can "cover" a port that is listed in the LongLivedPorts config option. Similarly, hidden service requests to ports listed in LongLivedPorts make us create stable internal circuits. Note that if there are no requests from the user for an hour, Tor will predict no use and build no preemptive circuits. The Tor client SHOULD NOT store its list of predicted requests to a persistent medium. 2.1.2. Clients build circuits on demand Additionally, when a client request exists that no circuit (built or pending) might support, we create a new circuit to support the request. For exit connections, we pick an exit node that will handle the most pending requests (choosing arbitrarily among ties), launch a circuit to end there, and repeat until every unattached request might be supported by a pending or built circuit. For internal circuits, we pick an arbitrary acceptable path, repeating as needed. In some cases we can reuse an already established circuit if it's clean; see Section 2.3 (cannibalizing circuits) for details. 2.1.3. Servers build circuits for testing reachability and bandwidth Tor servers test reachability of their ORPort once they have successfully built a circuit (on start and whenever their IP address changes). They build an ordinary fast internal circuit with themselves as the last hop. As soon as any testing circuit succeeds, the Tor server decides it's reachable and is willing to publish a descriptor. We launch multiple testing circuits (one at a time), until we have NUM_PARALLEL_TESTING_CIRC (4) such circuits open. Then we do a "bandwidth test" by sending a certain number of relay drop cells down each circuit: BandwidthRate * 10 / CELL_NETWORK_SIZE total cells divided across the four circuits, but never more than CIRCWINDOW_START (1000) cells total. This exercises both outgoing and incoming bandwidth, and helps to jumpstart the observed bandwidth (see dir-spec.txt). Tor servers also test reachability of their DirPort once they have established a circuit, but they use an ordinary exit circuit for this purpose. 2.1.4. Hidden-service circuits See section 4 below. 2.1.5. Rate limiting of failed circuits If we fail to build a circuit N times in a X second period (see Section 2.3 for how this works), we stop building circuits until the X seconds have elapsed. XXXX 2.1.6. When to tear down circuits XXXX 2.2. Path selection and constraints We choose the path for each new circuit before we build it. We choose the exit node first, followed by the other nodes in the circuit. All paths we generate obey the following constraints: - We do not choose the same router twice for the same path. - We do not choose any router in the same family as another in the same path. - We do not choose more than one router in a given /16 subnet (unless EnforceDistinctSubnets is 0). - We don't choose any non-running or non-valid router unless we have been configured to do so. By default, we are configured to allow non-valid routers in "middle" and "rendezvous" positions. - If we're using Guard nodes, the first node must be a Guard (see 5 below) - XXXX Choosing the length For circuits that do not need to be "fast", when choosing among multiple candidates for a path element, we choose randomly. For "fast" circuits, we pick a given router as an exit with probability proportional to its advertised bandwidth [the smaller of the 'rate' and 'observed' arguments to the "bandwidth" element in its descriptor]. If a router's advertised bandwidth is greater than MAX_BELIEVABLE_BANDWIDTH (currently 10 MB/s), we clip to that value. For non-exit positions on "fast" circuits, we pick routers as above, but we weight the clipped advertised bandwidth of Exit-flagged nodes depending on the fraction of bandwidth available from non-Exit nodes. Call the total clipped advertised bandwidth for Exit nodes under consideration E, and the total clipped advertised bandwidth for all nodes under consideration T. If E<T/3, we do not consider Exit-flagged nodes. Otherwise, we weight their bandwidth with the factor (E-T/3)/E. This ensures that bandwidth is evenly distributed over nodes in 3-hop paths. Similarly, guard nodes are weighted by the factor (G-T/3)/G, and not considered for non-guard positions if this value is less than 0. Additionally, we may be building circuits with one or more requests in mind. Each kind of request puts certain constraints on paths: - All service-side introduction circuits and all rendezvous paths should be Stable. - All connection requests for connections that we think will need to stay open a long time require Stable circuits. Currently, Tor decides this by examining the request's target port, and comparing it to a list of "long-lived" ports. (Default: 21, 22, 706, 1863, 5050, 5190, 5222, 5223, 6667, 6697, 8300.) - DNS resolves require an exit node whose exit policy is not equivalent to "reject *:*". - Reverse DNS resolves require a version of Tor with ...
TEAM-BLZ